NI	~	m	_	٠
14	u		u	٠

Grade:

Score:

Worksheet #1

COMPOUND INTEREST- FORMULA FAMILIARITY

Learning goal: Students will be able to understand and to apply compound interest in real-life problems.

Instructions: Calculate the Compound Interest using the formula.

$$A = P \Big(1 + \frac{r}{100} \Big)^n$$

	Q. No.	GIVEN	FORMULA	SUBSTITUTION
©meandmath.com	1.	P = ₹1,000 r = 5% n = 2		TM
	2.	P = ₹10,000 r = 4% n = 3		
	3.	P = ₹5,000 r = 7% n = 2	and	Math
	4.	P = ₹8,000 r = 2% n = 5	BELIEVE YOURS	ELF
	5.	P = ₹11,000 r = 4% n = 2		
	6.	P = ₹9,000 r = 15% n = 3		

©meandmath.com

Name:

Grade:

Score:

Worksheet #1 (Answers)

COMPOUND INTEREST- FORMULA FAMILIARITY

Learning goal: Students will be able to understand and to apply compound interest in real-life problems.

Instructions: Calculate the Compound Interest using the formula.

$$A = P \Big(1 + \frac{r}{100} \Big)^n$$

Q. No.	GIVEN	FORMULA	SUBSTITUTION	
1.	P = ₹1,000 r = 5% n = 2	$A = P \Big(1 + rac{r}{100}\Big)^n$	$A=1000igg(1+rac{5}{100}igg)^2$	
2.	P = ₹10,000 r = 4% n = 3	$A = P \Big(1 + rac{r}{100}\Big)^n$	$A=10,000igg(1+rac{4}{100}igg)^3$	
3.	P = ₹5,000 r = 7% n = 2	$A = P \Big(1 + rac{r}{100}\Big)^n$	$A = 5000igg(1+rac{7}{100}igg)^2$	
[™] ©	P = ₹8,000 r = 2% n = 5	$A = P\left(1 + \frac{r}{100}\right)^n$	$A = 8000 igg(1 + rac{2}{100}igg)^5$	
5.	P = ₹11,000 r = 4% n = 2	$A = P \Big(1 + rac{r}{100}\Big)^n$	$A = 11000 igg(1 + rac{4}{100}igg)^2$	
6.	P = ₹9,000 r = 15% n = 3	$A=P\Big(1+rac{r}{100}\Big)^n$	$A = 9000 igg(1 + rac{15}{100} igg)^3$	

©meandmath.com