Worksheet #5

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{343} = \square$	$\sqrt[3]{27}=\square$		
$\sqrt[3]{512} = \square$	$\sqrt[3]{125} = \square$		
$\sqrt[3]{216} = \square$	$\sqrt[3]{64}=\square$		
$\sqrt[3]{729} = \Box$	$\sqrt[3]{8} = \square$	TIVI	
$\sqrt[3]{1}=\square$	$\sqrt[3]{343}=\square$		
$\sqrt[3]{27}=\square$	$\sqrt[3]{64}=\square$		

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27} = 3$

Hence, A = 7

QUESTION	А	3A	A×A×A
$\sqrt[3]{(5A2)}=8$			
$\sqrt[3]{(72A)}=9$			
$\sqrt[3]{(A43)}=7$			
$\sqrt[3]{(A7)}=3$	©mean	lmath.com	

©meandmath.com

Name:

Grade:

Score:

Worksheet #5(Answers)

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{343}=7$	$\sqrt[3]{27}=3$	7 + 3 = 10	7 - 3 = 4
$\sqrt[3]{512}=8$	$\sqrt[3]{125}=5$	8 + 5 = 13	8 - 5 = 3
$\sqrt[3]{216}=6$	$\sqrt[3]{64}=4$	6 + 4 = 10	6 - 4 = 2
$\sqrt[3]{729}=9$	$\sqrt[3]{8}=2$	9 + 2 = 11	9 - 2 = 7
$\sqrt[3]{1}=1$	$\sqrt[3]{343}=7$	1 + 7 = 8	1 - 7 = -6
$\sqrt[3]{27}=3$	$\sqrt[3]{64}=4$	3 + 4 = 7	3 - 4 = -1

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	Α	3A	A×A×A
$\sqrt[3]{(5A2)}=8$	1	3	1
$\sqrt[3]{(72A)}=9$	9	27	729
$\sqrt[3]{(A43)}=7$	3	9	27
$\sqrt[3]{(A7)}=3$	2	6	8

©meandmath.com

©meandmath.com