Name:	Grade:
-------	--------

Score:

Worksheet #4

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

А	В	A + B	A - B
$\sqrt[3]{512} = \Box$	$\sqrt[3]{125} = \square$		
$\sqrt[3]{729}=\square$	$\sqrt[3]{64} = \square$		
$\sqrt[3]{8} = \square$	$\sqrt[3]{27}=\square$		
$\sqrt[3]{343}=\square$	$\sqrt[3]{1}=\square$	TIVI	
$\sqrt[3]{64} = \square$	$\sqrt[3]{216} = \Box$		
$\sqrt[3]{27}=\square$	$\sqrt[3]{512} = \square$		

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27} = 3$

Hence, A = 7

QUESTION	A	3A	A×A×A
$\sqrt[3]{(A4)}=4$			
$\sqrt[3]{(A000)}=10$			
$\sqrt[3]{(51A)}=8$			
$\sqrt[3]{(A12)}=7$			

©meandmath.com

Name: Grade:

Score:

Worksheet #4(Answers)

@meandmath.com

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{512}=8$	$\sqrt[3]{125}=5$	8 + 5 = 13	8 - 5 = 3
$\sqrt[3]{729}=9$	$\sqrt[3]{64}=4$	9 + 4 = 13	9 - 4 = 5
$\sqrt[3]{8}=2$	$\sqrt[3]{27}=3$	2 + 3 = 5	2 - 3 = -1
$\sqrt[3]{343}=7$	$\sqrt[3]{1}=1$	7 + 1 = 8	7 - 1 = 6
$\sqrt[3]{64}=4$	$\sqrt[3]{216}=6$	4 + 6 = 10	4 - 6 = -2
$\sqrt[3]{27}=3$	$\sqrt[3]{512}=8$	3 + 8 = 11	3 - 8 = -5

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	Α	3A	A×A×A
$\sqrt[3]{(A4)}=4$	6	18	216
$\sqrt[3]{(A000)}=10$	1	3	1
$\sqrt[3]{(51A)}=8$	2	6	8
$\sqrt[3]{(A12)}=7$	5	15	125

©meandmath.com