Worksheet #3

Score:

N

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{27} = \square$	$\sqrt[3]{64} = \square$		
$\sqrt[3]{8} = \square$	$\sqrt[3]{343}=\square$		
$\sqrt[3]{125} = \square$	$\sqrt[3]{512}=\square$		
$\sqrt[3]{216} = \Box$	$\sqrt[3]{729}=\square$	TIVI	
$\sqrt[3]{1}=\square$	$\sqrt[3]{27}=\Box$		
$\sqrt[3]{343}=\square$	$\sqrt[3]{125} = \Box$		

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	Α	3A	A×A×A
$\sqrt[3]{(7A9)}=9$			
$\sqrt[3]{(21A)}=6$			
$\sqrt[3]{(12A)}=5$			
$\sqrt[3]{(3A3)}=7$			

©meandmath.com

©meandmath.com

Name:

Grade:

Score:

Worksheet #3(Answers)

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{27}=3$	$\sqrt[3]{64}=4$	3 + 4 = 7	3 - 4 = -1
$\sqrt[3]{8}=2$	$\sqrt[3]{343}=7$	2 + 7 = 9	2 - 7 = -5
$\sqrt[3]{125}=5$	$\sqrt[3]{512}=8$	5 + 8 = 13	5 - 8 = -3
$\sqrt[3]{216}=6$	$\sqrt[3]{729}=9$	6 + 9 = 15	6 - 9 = -3
$\sqrt[3]{1}=1$	$\sqrt[3]{27}=3$	1 + 3 = 4	1 - 3 = -2
$\sqrt[3]{343}=7$	$\sqrt[3]{125}=5$	7 + 5 = 12	7 - 5 = 2

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	Α	3A	A×A×A
$\sqrt[3]{(7A9)}=9$	2	6	8
$\sqrt[3]{(21A)}=6$	6	18	216
$\sqrt[3]{(12A)}=5$	5	15	125
$\sqrt[3]{(3A3)}=7$	4	21	64

©meandmath.com

©meandmath.com