Name:	Grade:	
Name:	Grade:	

Worksheet #2

Score:

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{125} = \square$	$\sqrt[3]{27}=\square$		
$\sqrt[3]{343} = \square$	$\sqrt[3]{8}=\square$		
$\sqrt[3]{64} = \square$	$\sqrt[3]{512}=\square$		
$\sqrt[3]{1}=\square$	$\sqrt[3]{216} = \square$	TIVI	
$\sqrt[3]{729}=\square$	$\sqrt[3]{64} = \square$		
$\sqrt[3]{8}=\square$	$\sqrt[3]{27}=\square$		

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27} = 3$

Hence, A = 7

QUESTION	A	3A	A×A×A
$\sqrt[3]{(6A)}=4$			
$\sqrt[3]{(1A5)}=5$			
$\sqrt[3]{(5A2)}=2$			
$\sqrt[3]{(2A6)}=6$			

©meandmath.com

©meandmath.com

Name: Grade:

Score:

Worksheet #2(Answers)

@meandmath.com

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{125}=5$	$\sqrt[3]{27}=3$	5 + 3 = 8	5 - 3 = 2
$\sqrt[3]{343}=7$	$\sqrt[3]{8}=2$	7 + 2 = 9	7 - 2 = 5
$\sqrt[3]{64}=4$	$\sqrt[3]{512}=8$	4 + 8 = 12	4 - 8 = -4
$\sqrt[3]{1}=1$	$\sqrt[3]{216}=6$	1 + 6 = 7	1 - 6 = -5
$\sqrt[3]{729}=3$	$\sqrt[3]{64}=4$	9 + 4 = 13	9 - 4 = 5
$\sqrt[3]{8}=3$	$\sqrt[3]{27}=5$	2 + 5 = 7	2 - 5 = -3

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	A	3A	A×A×A
$\sqrt[3]{(6A)}=4$	4	12	64
$\sqrt[3]{(1A5)}=5$	2	6	8
$\sqrt[3]{(5A2)}=2$	1	3	1
$\sqrt[3]{(2A6)}=6$	1	3	8

©meandmath.com