N I				
N	am	e:		

Grade:

Score:

Worksheet #1

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{27}=3$	$\sqrt[3]{8}=2$	3 + 2 = 5	3 - 2 = 1
$\sqrt[3]{64}=\square$	$\sqrt[3]{125} = \square$		
$\sqrt[3]{216} = \Box$	$\sqrt[3]{1}=\square$		
$\sqrt[3]{8} = \square$	$\sqrt[3]{64}=\square$	TIVI	
$\sqrt[3]{343} = \square$	$\sqrt[3]{27}=\square$		
$\sqrt[3]{512} = \Box$	$\sqrt[3]{216} = \square$		

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27}=3$

Hence, A = 7

QUESTION	А	3A	A×A×A
$\sqrt[3]{(2A)}=3$	7	21	343
$\sqrt[3]{(A4)}=4$			
$\sqrt[3]{(1A5)}=5$			
$\sqrt[3]{(2A6)}=6$			

©meandmath.com

©meandmath.com

Name: Grade: Score:

Worksheet #1(Answers)

@meandmath.com

MISSING DIGITS - CUBE ROOTS

Learning goal: Students will determine missing digits in numbers based on given cube root conditions and apply arithmetic operations to analyze relationships between values.

Instructions: Fill the table.

A	В	A + B	A - B
$\sqrt[3]{27}=3$	$\sqrt[3]{8}=2$	3 + 2 = 5	3 - 2 = 1
$\sqrt[3]{64}=4$	$\sqrt[3]{125}=5$	4 + 5 = 9	4 - 5 = -1
$\sqrt[3]{216}=6$	$\sqrt[3]{1}=1$	6 + 1 = 7	6 - 1 = 5
$\sqrt[3]{8}=2$	$\sqrt[3]{64}=4$	2 + 4 = 6	2 - 4 = -2
$\sqrt[3]{343}=7$	$\sqrt[3]{27}=3$	7 + 3 = 10	7 - 3 = 4
$\sqrt[3]{512}=8$	$\sqrt[3]{216}=6$	8 + 6 = 14	8 - 6 = 2

Instructions: Complete the table where A is a digit. Refer the below example.

$$\sqrt[3]{2A}=3$$

we know that $\sqrt[3]{27} = 3$

Hence, A = 7

QUESTION	A	3A	A×A×A
$\sqrt[3]{(2A)}=3$	7	21	343
$\sqrt[3]{(A4)}=4$	6	18	216
$\sqrt[3]{(1A5)}=5$	2	6	8
$\sqrt[3]{(2A6)}=6$	1	3	1

©meandmath.com